Flavin reduction activates Drosophila cryptochrome.

نویسندگان

  • Anand T Vaidya
  • Deniz Top
  • Craig C Manahan
  • Joshua M Tokuda
  • Sheng Zhang
  • Lois Pollack
  • Michael W Young
  • Brian R Crane
چکیده

Entrainment of circadian rhythms in higher organisms relies on light-sensing proteins that communicate to cellular oscillators composed of delayed transcriptional feedback loops. The principal photoreceptor of the fly circadian clock, Drosophila cryptochrome (dCRY), contains a C-terminal tail (CTT) helix that binds beside a FAD cofactor and is essential for light signaling. Light reduces the dCRY FAD to an anionic semiquinone (ASQ) radical and increases CTT proteolytic susceptibility but does not lead to CTT chemical modification. Additional changes in proteolytic sensitivity and small-angle X-ray scattering define a conformational response of the protein to light that centers at the CTT but also involves regions remote from the flavin center. Reduction of the flavin is kinetically coupled to CTT rearrangement. Chemical reduction to either the ASQ or the fully reduced hydroquinone state produces the same conformational response as does light. The oscillator protein Timeless (TIM) contains a sequence similar to the CTT; the corresponding peptide binds dCRY in light and protects the flavin from oxidation. However, TIM mutants therein still undergo dCRY-mediated degradation. Thus, photoreduction to the ASQ releases the dCRY CTT and promotes binding to at least one region of TIM. Flavin reduction by either light or cellular reductants may be a general mechanism of CRY activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle

Cryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD•-) redox state both in vitro and ...

متن کامل

Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability

Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the ...

متن کامل

Correction: Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells

Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cry...

متن کامل

Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.

Cryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. Upon light absorption, dCRY undergoes a conformational change that enables it to bind to Timeless (dTIM), as well as to two different E3 ligases that ubiquitylate dTIM and dCRY, respectively, resulting in their proteolysis and resetting the phase of the circadian rhythm. Purified dCRY contains oxidized flavin (FADox), whic...

متن کامل

Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.

Cryptochromes are blue light-activated photoreceptors found in multiple organisms with significant similarity to photolyases, a class of light-dependent DNA repair enzymes. Unlike photolyases, cryptochromes do not repair DNA and instead mediate blue light-dependent developmental, growth, and/or circadian responses by an as yet unknown mechanism of action. It has recently been shown that Arabido...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 51  شماره 

صفحات  -

تاریخ انتشار 2013